
Digital Low-Level Radio Frequency Control and
Microphonics Mitigation of Superconducting Cavities

By

Nathanael Robert Usher

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

2007

ABSTRACT

Digital Low-Level Radio Frequency Control and
Microphonics Mitigation of Superconducting Cavities

By

Nathanael Robert Usher

Superconducting Radio Frequency (SRF) cavities designed for proposed linear reaccel-

erators at the National Superconducting Cyclotron Laboratory (NSCL) have an unloaded

quality factor (Q) on the order of 109. The high Q results in a very narrow bandwidth, so

small perturbations in the cavity’s resonant frequency result in large changes in the mag-

nitude and phase of its electric field for a fixed frequency driving signal. As a result, it is

necessary to use a controller that can compensate for perturbations as they occur.

This project develops a new digital low-level radio frequency (LLRF) controller for

this application, including DSP-based hardware, software algorithms, and a graphical user

interface. The digital LLRF controller provides two types of control over cavity pertur-

bations. The LLRF implements a PID control on the cavity driving signal to compensate

for nonlinearities and small random disturbances. Significant cavity detuning caused by

narrow-band vibrations, referred to as “microphonics,” are reduced by the LLRF controller

using a piezoelectric tuner controlled by an adaptive feedforward cancellation algorithm.

The completed prototype is a small, standalone, economically viable, ethernet con-

nected controller. Through a MATLAB interface, it will allow advanced algorithm devel-

opment by control engineers who are not necessarily familiar with the low-level workings

of the controller.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Xiaobo Tan and Dr. John Vincent of the National

Superconducting Cyclotron Laboratory (NSCL) for giving me the opportunity to work on

this project. I would also like to thank everyone in the electronics department at the NSCL

for their help. Without help from Mark Davis and John Priller, I would not have been able to

develop the network interface and graphical front-end. Adam Molzahn laid the groundwork

for this project with his digital phase meter and introduced me to the fundamentals of how

the system works. Without Adam’s work to build upon and the help and guidance of the

NSCL staff, I would not have been able to complete this project.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 Introduction . 1

2 Signal Digitization and Interlocks . 9
2.1 Collecting Input Samples . 9
2.2 CORDIC Algorithm . 12
2.3 DSP Interface . 15
2.4 RF Output Creation . 18
2.5 Interlocks . 19

3 Tasks Performed by the Digital Signal Processor 21
3.1 DSP Peripherals . 21
3.2 Control Program Overview . 22
3.3 Data Received From Host Processor . 23
3.4 Control Thread . 24
3.5 Status Thread . 25
3.6 Software Interrupts . 26

4 Control . 28
4.1 RF Amplitude and Phase Control . 28
4.2 Cavity Tuning . 29

5 The ZWorld RabbitCore Host Processor and Graphical User Interface 32
5.1 Module Initialization . 32
5.2 User Interface . 33
5.3 Main Screen . 34
5.4 PID Screen . 36
5.5 AFC Screens . 37
5.6 Startup Screen . 40
5.7 Advanced Screen . 40

6 Testing and Performance . 42
6.1 Cavity Simulation Circuit . 42

iv

7 Conclusion and Future Work . 50
7.1 Conclusion . 50
7.2 Required Changes . 51
7.3 Future Hardware Upgrades . 52
7.4 Future Software Upgrades . 53

A FPGA Implementation of a CORDIC Algorithm 55

B DSP Daughter Board Schematics . 59

BIBLIOGRAPHY . 71

v

LIST OF TABLES

2.1 CORDIC algorithm example. 15

2.2 Description of FPGA memory locations. 16

3.1 Responses from the DSP are received by the host two words after the com-
mand was transmitted. 24

vi

LIST OF FIGURES

1.1 Overview of the LLRF controller as it will be connected to an SRF cavity.
The LLRF controller consists of everything inside of the dashed lines. . . . 4

1.2 LLRF controller motherboard. DSP daughter board is attached on the lower
right corner. Host processor board attaches to back side. Front side contains
the reference phase-locked loop and all input signal conditioning compo-
nents. Back side contains the high-speed ADCs and DAC, FPGA, and
output signal conditioning components. 5

1.3 DSP daughter board. DSP is underneath the large black heat sink. 6

1.4 ZWorld RabbitCore daughter board. 6

2.1 Sampling a 50 MHz signal at 40 MSPS produces a 10 MHz alias whose
phase is measured relative to the phase of the 10 MHz reference signal. . . 11

2.2 DAC output spectrum when producing output at 40 MSPS (left) and IF
after 50 MHz band-pass filter (right). 19

2.3 DAC output spectrum when producing output at 80 MSPS (left) and IF
after 50 MHz band-pass filter (right). 20

4.1 Block diagram of PID control. The cavity behaves linearly when operat-
ing near its resonant frequency, so it can be approximated by the transfer
function, G(s). 29

4.2 Adaptive feedforward cancellation control for the cancellation of a single
sinusoidal disturbance [22]. 30

5.1 Main controller screen. 35

5.2 PID tuning screen. 37

5.3 AFC screen. 38

5.4 FFT screen shows FFT of cavity output in dBm, cavity magnitude response,
and cavity phase response in degrees. All plots show 0 to 1000 Hz linear
scale. 39

5.5 Startup screen. 40

5.6 Advanced screen. 41

6.1 Block diagram of circuit used for cavity simulation. The two transfer func-
tions are replaceable RC networks. 43

vii

6.2 Each of the transfer function blocks is made up of a replaceable RC net-
work. 44

6.3 Ideal magnitude response (top) and magnitude response calculated by
LLRF controller (bottom). 46

6.4 Ideal phase response (top) and phase response calculated by LLRF con-
troller (bottom). 47

6.5 FFT of RF input with 60 Hz sinusoidal disturbance. Because the magnitude
of the disturbance is large, its third harmonic is also present. 49

B.1 System Overview. 60

B.2 Voltage regulation and clock generation. 61

B.3 DSP power connections. 62

B.4 DSP bypass capacitors, UTOPIA port, HPI port and reserved pins. 63

B.5 DSP serial connections. 64

B.6 DSP JTAG emulation port and general purpose port. 65

B.7 DSP external memory interface A. 66

B.8 External SDRAM. 67

B.9 DSP external memory interface B. 68

B.10 External non-volatile memory and FPGA connection. 69

viii

CHAPTER 1

Introduction

The desire to do further research into particle physics has driven a demand for new high-

energy accelerators. The reduced surface resistances of superconducting cavities make

them capable of supporting high fields with low power losses. The quality factor (Q) of a

cavity of given geometry is an indicator of how high a field it can achieve. While cavities

with high quality factors can achieve higher internal fields, this comes at the expense of

narrower bandwidth. The very narrow bandwidth associated with high Q cavities makes

maintaining amplitude and phase control in the presence of perturbations increasingly dif-

ficult [1].

Feedback control is required to maintain a stable cavity field in the presence of a distur-

bance. One can apply a PID control to maintain the amplitude and phase of the cavity field

at a given set point. As perturbations shift the cavity’s resonant frequency away from the

RF driving frequency, the low-level radio frequency (LLRF) controller measures the error

in the cavity field and compensates. Although this method works well for small perturba-

tions, it will not work for large perturbations, since the required input power to maintain

the cavity field will be too high. Therefore, for high-Q superconducting cavities, it is nec-

essary to have an active tuning mechanism to cancel the disturbances to keep the driving

frequency within the cavity’s bandwidth.

1

A properly designed continuous wave system will only have limited narrowband si-

nusoidal disturbances due to vibrations (microphonics). Simrock et al. were the first to

demonstrate using a piezoelectric actuator to cancel these disturbances [2]. Due to the com-

plex transfer functions of multi-cell superconducting cavities, a feedback control would be

exceedingly difficult to implement. However, Kandil et al. demonstrated an adaptive feed-

forward cancellation (AFC) algorithm capable of canceling narrow-band vibrations in a

multi-cell cavity using a dSpace development board connected to a PC [3]. Although the

AFC algorithm was shown to work, the implementation required a PC and several other

pieces of equipment to control a single cavity. Therefore, it was not practical for use in a

running linear accelerator, which will have many cavities that need to be controlled. The

control needs to be implemented on a low-level radio frequency (LLRF) controller to be

useful, which is the subject of this work. The LLRF controller will use the AFC algorithm

to attenuate cavity detuning from significant narrow-band disturbances, and use a PID con-

trol to continuously adjust the amplitude and phase of the RF driving signal to compensate

for other disturbances.

Digital LLRF controllers are currently being designed at several accelerator labs to

replace analog controls. Implementing controls in the digital domain reduces the size and

cost of the hardware and allows the implementation of controls that are not feasible on

analog systems [9]. Most of the new LLRF controllers being developed for applications that

do not require a lot of computing power rely on a field programmable gate array (FPGA)

to perform the RF measurements and control algorithms. The controllers being developed

for the Spallation Neutron Source (SNS) accumulator ring [5] and International Linear

Collider (ILC) [6] are both based on FPGAs. For applications that require more processing

2

power, an FPGA with an embedded processor is commonly used [7]. Although some of

the other LLRF controller designs provide a lot of the functionality required for the linear

reaccelerator upgrade to the NSCL and could possibly be adapted if necessary, they do not

meet all of the requirements for the reaccelerator upgrade. The problem with either of these

designs is that upgrading the software for the system requires extensive knowledge of the

LLRF controller and experience with FPGA programming. One of the requirements for the

LLRF controller for the NSCL is that it must be possible for control engineers to update the

software controls using tools they are familiar with, without needing to know the details

about how the hardware is set up. Other requirements are that the LLRF controller must

be completely standalone, requiring only a network connection to communicate with the

EPICS control system [8], it needs to provide tuner outputs for microphonics mitigation,

and it needs to have a user-friendly interface for setup and monitoring.

Figure 1.1 shows an overview of the LLRF controller developed here, which was in-

spired by the LLRF controller designed by Lawrence Berkeley National Laboratory [9].

The LLRF controller consists of a motherboard (Figure 1.2), a DSP daughter board (Fig-

ure 1.3), and a control host board (Figure 1.4). The input signal conditioning portion of

the motherboard is unchanged from the previous iteration of the project: the digital phase

meter developed by Adam Molzahn [10]. However, there have been major changes to the

digital sections. The biggest change is that a high-performance DSP has been added to the

controller. All of the digital processing is now done by the DSP, so all data is sent from

the FPGA directly to the DSP instead of the host processor. The DSP runs the PID based

amplitude and phase control algorithms and feedforward based microphonics mitigation

algorithms and sends data to the control host processor as necessary. This frees up enough

3

Figure 1.1. Overview of the LLRF controller as it will be connected to an SRF cavity. The
LLRF controller consists of everything inside of the dashed lines.

FPGA logic to allow it to perform a 16-bit coordinate rotation digital computer (CORDIC)

algorithm [11] on all incoming channels to obtain their phase and magnitude information.

The parallel nature of the FPGA makes it the ideal place for doing the phase and amplitude

conversions, since it can do all input channels simultaneously without slowing down the

rest of the system. By converting all input channels simultaneously, we guarantee that a

read of all input channels returns amplitude and phase information taken at the same sample

time.

There are five RF inputs on the front of the controller module. One is a reference signal

(10 MHz), used to control the sample clock for the high-speed analog-to-digital converters

4

Figure 1.2. LLRF controller motherboard. DSP daughter board is attached on the lower
right corner. Host processor board attaches to back side. Front side contains the reference
phase-locked loop and all input signal conditioning components. Back side contains the
high-speed ADCs and DAC, FPGA, and output signal conditioning components.

5

Figure 1.3. DSP daughter board. DSP is underneath the large black heat sink.

Figure 1.4. ZWorld RabbitCore daughter board.

6

(ADCs) used to digitize the inputs and to synchronize multiple modules when they are

implemented together in an accelerator. Three of the RF inputs are the input signals to be

measured (forward power, reflected power, and cavity output). Depending on mixer and

filter parts selection when assembling the modules, the inputs can be between 2 MHz and

1.5 GHz, with power levels from -7 dBm to +33 dBm. However, there are some frequencies

within that range that will not work well due to interactions of the harmonics that may be

present within the intermediate frequency. The final RF input is the local oscillator (LO)

input, which must be at a frequency 50 MHz higher or lower than the RF input frequency

and phase-locked to the reference signal. The LO signal is mixed with each RF input to

convert them to the 50 MHz intermediate frequency (IF) for sampling. The fixed 50 MHz

intermediate frequency is used, because it is easier to digitize a signal with a fixed, known

frequency. An ideal mixer produces frequencies which are the sum and difference of its two

input signals as shown in Equation (1.3). Since the LO signal is chosen 50 MHz higher or

lower than the RF frequency, one of the components of the mixer output is at 50 MHz, and

the other is filtered out using a 50 MHz band pass filter. Also, since the LO is phase-locked

to the reference signal, θ2 is fixed and can be calibrated out. Therefore, phase changes in

the RF input directly affect the phase of the IF signal.

RF = A1sin(ω1t +θ1) (1.1)

LO = A2sin(ω2t +θ2) (1.2)

RF ∗LO =
A1A2

2
cos((ω1 +ω2) t +θ1 +θ2)−

A1A2

2
cos((ω1−ω2) t +θ1−θ2) (1.3)

7

The remaining front panel connectors are the RF output, a tuner output, RF On/Off

input, reset input, and a fault output. The RF output is produced by creating an output at

the IF, then mixing it with the LO to produce a signal at the desired frequency. The fast

tuner output is an analog signal that is designed to cancel microphonics up to 1 kHz. A

slow tuner output is provided that can be used to compensate for slow drifts in the resonant

frequency of the cavity. The rest of the signals are digital control signals.

8

CHAPTER 2

Signal Digitization and Interlocks

The field programmable gate array’s (FPGA) primary task is to collect the data sampled

by the high-speed ADCs and buffer it until it is requested by the DSP. The configurability

and parallel nature of the FPGA makes it ideal for collecting and buffering the sampled RF

signals. The FPGA’s other tasks include setting the digital attenuators on the input channels

and taking care of some of the interlock signals. The FPGA used in this project is a Xilinx

Spartan-II XC2S150. Although it is adequate for this project, future versions will probably

move to a newer, faster FPGA with more available logic.

2.1 Collecting Input Samples

To be able to calculate the amplitude and phase of the signal, we need a vector-based

measurement of the signal with respect to a reference. If the samples are taken at 90◦

intervals, then the vector realizations can be equated to the real and imaginary components

of a vector in the complex plane. If the first sample is taken as the real component of the

signal, then the second sample is 90◦ lagging and is equated to the imaginary component

of the signal. In the absence of a DC sampling error, the third sample is the negative of

the first sample and the fourth sample is the negative of the second sample. The first and

9

third and second and fourth samples can be averaged to remove any DC sampling error.

Once the real (I) and imaginary (Q) components are known, the phase and magnitude can

be computed using:

Phase = tan−1
(

Q
I

)
(2.1)

Magnitude =
√

I2 +Q2 (2.2)

The phase information gathered with this method can be used to tell the relative phase

between inputs, but is not meaningful when using multiple LLRF controllers in a system,

since the first sample is taken at an arbitrary time. Therefore, one of the RF inputs is used

as a reference signal. The phase of the reference signal is subtracted from the phase of

each input to produce phases relative to the reference signal, which allows multiple LLRF

controllers to be synchronized with each other.

In a variable frequency system, it can be difficult to take samples every 90◦ since the

time delay between samples depends on the signal frequency. However, since all of our

inputs have been mixed to 50 MHz, we have a known frequency, and just need to choose

an appropriate sample rate [10]. To take samples every 90◦ of the input signal, we need

four samples per period, and therefore, a sample rate of 200 MSPS. ADCs that can sample

at 200 MSPS are expensive, so it is not cost-effective to use them, and it was necessary to

find another way to get the I and Q values. By removing the condition that all four samples

in a measurement must come from the same period of the input signal, we can use a lower

speed, less expensive ADC. Therefore, a sample rate of 40 MSPS was chosen. Sampling at

40 MSPS produces a 10 MHz alias with the same amplitude and phase as the 50 MHz IF

signal (Figure 2.1) and gives us samples taken every 90◦ as desired.

10

Figure 2.1. Sampling a 50 MHz signal at 40 MSPS produces a 10 MHz alias whose phase
is measured relative to the phase of the 10 MHz reference signal.

11

Each ADC samples its input on the rising edge of the 40 MHz sample clock. The FPGA

reads the 14-bit data output of each ADC on the falling edge of the clock, when the data

becomes valid. The FPGA samples all inputs simultaneously, so the relative phases of

each channel are preserved, even if one or more of the input channels are drifting in phase.

As seen in Figure 2.1, by sampling the intermediate frequency (50 MHz) at 40 MHz, the

system produces samples that are 90◦ apart, and if the phase of the input is constant, the

input sequence will repeat every four samples. The FPGA passes every input through a 10

MHz first-order digital band-pass filter to try to remove noise that might have been picked

up by the ADC during sampling [12]. Next, each set of samples is saved as either I, Q, −I,

or −Q, depending on the value of a 2-bit counter. The FPGA then averages the I and −I

and Q and −Q pairs and buffers them so they can be accessed by the DSP. The averaging

removes any DC offset from the samples, to give the real and imaginary components of the

vector.

2.2 CORDIC Algorithm

Since most vector calculations done by the DSP need to be done in polar coordinates, it

is necessary to implement an efficient algorithm for conversion between the rectangular

and polar coordinates. In the previous iteration of this project [10], these conversions were

done by the host processor using equations (2.1) and (2.2). However, doing the conver-

sions in the host processor is much too slow to be reused here. One option to speed up

the conversions was to implement the same conversion in the DSP. However, implement-

ing the conversion in the DSP uses a surprisingly large amount of CPU time and would

12

greatly reduce the amount of computing time available for the control algorithms. The best

option is to implement the conversions in the FPGA using the Coordinate Rotation Dig-

ital Computer (CORDIC) algorithm. The CORDIC algorithm was designed in the early

days of digital computers as a way to perform conversions between polar and rectangular

coordinates quickly using a small number of gates. It uses a series of multiplications by

known complex numbers to shift the input vector to 0◦, while keeping a running total of the

amount of phase shift it has added. After shifting the input vector to 0◦, we know that the

output vector’s real component is the input vector’s magnitude, and the input vector’s phase

is the negative of the total phase shift. By selecting the phase shifts carefully, each step of

the algorithm can be implemented using only right-shifts and addition or subtraction [13].

Another advantage of the CORDIC algorithm is that it does not have to produce its

output in any particular type of unit, so we are not restricted to using radians or degrees to

represent the phase. To speed DSP calculations, the system represents phase as a raw 16-bit

value, with each bit representing 360
65536 degrees. This is advantageous because the DSP no

longer has to check whether its results are between 0◦ and 360◦, since any result that would

normally fall outside this range simply overflows and wraps around to the desired value.

In each stage of the CORDIC algorithm, we check the sign of the Q value to decide

whether to add or subtract phase. The first stage is a 90◦ shift. If Q is positive, the I and

Q values are swapped and the new Q value is negated to produce a −90◦ shift, and 90◦ is

added to the cumulative phase. If Q is negative, the I and Q values are swapped, the new I

value is negated to produce a +90◦ shift, and 90◦ is subtracted from the cumulative phase.

(I +Q j)(0+ j) =−Q+ I j (2.3)

13

(I +Q j)(0− j) = Q− I j (2.4)

In subsequent stages, the shifts are performed by multiplying the intermediate vector by a

vector of the form 1+2−n j or 1−2−n j, depending on the sign of Q.

(I +Q j)
(
1+2−n j

)
=
(
I−2−nQ

)
+
(
Q+2−nI

)
j (2.5)

(I +Q j)
(
1−2−n j

)
=
(
I +2−nQ

)
+
(
Q−2−nI

)
j (2.6)

Since the FPGA stores numbers in binary format, 2−nI is equal to I shifted to the right

by n bits, and 2−nQ is equal to Q shifted to the right by n bits. The second stage of the

algorithm uses n = 0, and n is increased by 1 in each subsequent stage. The algorithm gains

approximately 1 bit of resolution in each stage it performs, so it runs 16 stages as set up

in the FPGA. The FPGA performs each stage of the routine on the rising edge of the ADC

sample clock, and it does 16 stages per conversion, so the FPGA is able to convert every

fourth set of I, Q,−I, and−Q values for each channel. This produces phase and magnitude

pairs 2,500,000 times per second, which is much faster than the DSP will request them.

One issue that needs to be taken into account with this algorithm is that after the first

stage, each multiplication changes the magnitude of the vector being converted, not just the

phase. However, the total magnitude scaling is a constant dependent only on the number

of iterations of the algorithm. Therefore, the magnitude scaling inverse can be calculated

ahead of time and can be used to cancel the scaling effect. Table 2.1 shows an example

conversion including the magnitude scaling constant. The cumulative phase converges

toward the actual phase of 53.8◦, and I (divided by the magnitude constant) converges to

14

Table 2.1. CORDIC algorithm example.

Stage I Q Cum. Phase Mag. Constant Next Phase Shift
0 150 205 0◦ 1 −90◦

1 205 -150 90◦ 1 45◦

2 355 55 45◦ 1.41421 −26.565◦

3 382.5 -122.5 71.565◦ 1.58114 14.036◦

4 413.125 -26.875 57.529◦ 1.62980 7.125◦

5 416.484 24.766 50.404◦ 1.64248 −3.576◦

6 418.032 -1.265 53.98◦ 1.64569 1.790◦

the actual magnitude of 254.02.

In order to produce the high-speed DAC output from the desired phase and magnitude

information, it is necessary to perform the CORDIC algorithm in the reverse direction. The

algorithm is almost identical, except that the FPGA starts with the desired magnitude in I,

the desired phase in the phase accumulator, and Q = 0. Then, it performs shifts based on

the sign of the phase value until the phase is shifted to 0. Again, there is a scaling factor

in the conversion, so the DSP must multiply the desired magnitude by the scaling factor’s

inverse before sending the phase and magnitude pair to the FPGA.

2.3 DSP Interface

The fastest way to transfer data between the DSP and a peripheral is through one of its two

external memory interfaces (EMIF). To connect the FPGA to the DSP, I set up the FPGA

to appear as a 16-bit asynchronous RAM, then defined memory locations that the DSP can

read or write to send or receive data [14]. Because of the small number of available pins

on the FPGA, I could only set up 32 memory locations, but this is sufficient for the current

system. The memory locations are shown in Table 2.2.

15

Table 2.2. Description of FPGA memory locations.

Add. Description Read/Write Add. Description Read/Write
0 Ch1 - Ref. Phase Read-only 16 Ch1 I Read-only
1 Ch1 Amplitude Read-only 17 Ch1 Q Read-only
2 Ch2 - Ref. Phase Read-only 18 Ch2 I Read-only
3 Ch2 Amplitude Read-only 19 Ch2 Q Read-only
4 Ch3 - Ref. Phase Read-only 20 Ch3 I Read-only
5 Ch3 Amplitude Read-only 21 Ch3 Q Read-only
6 Always Outputs 0 Read-only 22 Ref I Read-only
7 Ref. Amplitude Read-only 23 Ref Q Read-only
8 Output Phase R/W 24 Output I Read-only
9 Output Amplitude R/W 25 Output Q Read-only

10 Error Register Read-only 26 I Input R/W
11 Digital Attenuator R/W 27 Q Input R/W
12 Ref. Phase Read-only 28 I Input R/W
13 Unused R/W 29 Q Input R/W
14 Output (shifted 225◦) I Read-only 30 Phase Output Read-only
15 Output (shifted 225◦) Q Read-only 31 Magnitude Output Read-only

The phase and magnitude information discussed in the previous section is available to

the DSP in memory locations 0 to 7. When the DSP performs a sequential read of the input

channels, the FPGA temporarily stops updating the data. This guarantees that the data from

each channel was obtained at the same time. The FPGA begins updating the data when the

DSP reads or writes any other location. The phase of each channel is given to the DSP

relative to the reference phase. As a result, the reference phase in register 6 is always 0. In

the event that the absolute phase of the reference signal is desired, it is available in register

12. The I and Q values for each input channel are available in memory locations 16 to 23.

The DSP sets the RF output by writing a desired phase and amplitude to registers 8

and 9. The FPGA automatically runs the new settings through its CORDIC routine and

produces corresponding I and Q values in locations 24 and 25. The I and Q values are sent

to the high-speed DAC to produce the RF output. When producing the output at 80 MSPS,

16

the FPGA uses a total of 8 samples, and therefore needs two sets of I and Q pairs. The

extra pair is produced by adding 225◦ to the desired output phase before passing it through

the CORDIC routine. The extra I and Q values are available in locations 14 and 15.

Six of the memory locations (26 to 31) are for an additional CORDIC routine. When

the DSP writes a set of I, Q, −I, and −Q values to registers 26 through 29, the FPGA runs

the CORDIC algorithm on the set of input data and produces a phase and magnitude pair in

registers 30 and 31. These registers are used when the DSP is measuring the transfer func-

tion of the cavity, to find the value of the phase shift and magnitude at each measurement

frequency.

The value of the digital attenuators is controlled by register 11. The digital attenuators

have six control bits, so the uppermost ten bits of this register are not used and are read as

0. A value of 0 corresponds to the minimum attenuation, and a value of 63 corresponds to

the maximum attenuation.

Memory location 10 shows the over-voltage status of each ADC and the status of each

interlock. Each ADC has a pin that is set high if the input voltage to the ADC is too high

to produce a valid reading. The over-voltage pins are connected to the 4 least significant

bits of register 10. If the digital attenuators are set up correctly and there is no malfunction

in the module, these bits will read 0. Bits 4 and 5 correspond to the reset signal and on/off

signal, respectively. During normal operation, these bits will both read 0.

There is one unused register, in location 13. It can be read from and written to by the

DSP, but currently does not perform any function in the FPGA.

17

2.4 RF Output Creation

The input sampling process can be reversed to produce the RF output. Since the DSP

provides the output set points as phase and amplitude pairs, the FPGA first passes the set

points through the CORDIC routine to produce the I and Q values. Since it takes 400 ns

for the FPGA to complete a single CORDIC conversion, and the FPGA is set up to con-

tinuously perform conversions on the values stored in the phase and amplitude registers, it

takes between 400 ns and 800 ns before a new setting affects the output. The −I and −Q

values are created by negating the I and Q values. The final step necessary before sending

the values to the output DAC is to convert them into the proper format. The FPGA repre-

sents numbers internally as 16-bit two’s complement numbers (-32768 to 32767), while the

DAC expects 14-bit straight binary numbers (0 to 16383). The FPGA converts each output

sample by complementing the most significant bit to put each sample into 16-bit straight

binary format and ignores the two least significant bits to shrink the number to the required

14 bits.

The FPGA passes the I/Q/−I/−Q values to the output DAC at 40 MSPS to produce

the RF output. The DAC produces a square wave, so the output is not made up of a single

frequency component; the output contains a 10 MHz signal and its odd harmonics (30

MHz, 50 MHz, 70 MHz, etc.) as shown in Figure 2.2. Since we only want the 50 MHz

signal to be present, the DAC output is passed through a 50 MHz filter, which attenuates

the unwanted frequencies.

Increasing the sampling rate of the DAC should provide both a better signal-to-noise

ratio and increase the power of the 50 MHz signal [15]. The output DAC supports sample

18

Figure 2.2. DAC output spectrum when producing output at 40 MSPS (left) and IF after 50
MHz band-pass filter (right).

rates up to 165 MSPS, but the current RF board design limits the DAC sample rate to

80 MSPS [16]. To create the RF output at 80 MSPS, we need to cycle through eight

samples, taken at 0◦, 225◦, 90◦, 315◦, 180◦, 45◦, 270◦, and 135◦. Four of these samples

(0◦, 90◦, 180◦, and 270◦) correspond to the I/Q/−I/−Q samples used when producing the

output at 40 MSPS. To produce the other four samples, the FPGA adds 225◦ to the desired

phase value and then sends the new phase and amplitude pair through the CORDIC routine.

Producing the RF output at 80 MSPS yielded an approximately 5.3 dB increase in power at

the intermediate frequency and approximately a 3.0 dB improvement in the signal-to-noise

ratio as shown in Figure 2.3.

2.5 Interlocks

The module has three external connections for safety interlocks: RF enable, fault, and

reset. All of the interlocks are TTL signals that are connected through the FPGA so that

19

Figure 2.3. DAC output spectrum when producing output at 80 MSPS (left) and IF after 50
MHz band-pass filter (right).

their behavior can be reconfigured if necessary. The module’s RF output must be disabled

unless the RF enable interlock is low. This is accomplished by tying the RF enable signal

to the power down pin on the high-speed DAC. The fault interlock is an output, which can

be used to signal the rest of the RF control system. It is currently unused, since the module

is not programmed to detect faults. If the module were to detect a fault, it would disable the

RF output, set the fault signal, and wait for a reset signal. When a rising edge is detected

on the reset input, the module will reset the fault signal, and enable the RF output (if the

RF enable interlock is low).

20

CHAPTER 3

Tasks Performed by the Digital Signal

Processor

The control processing is performed by a Texas Instruments TMS320C6414T fixed-point

DSP. It was chosen because of its high speed and available software tools. In the current

iteration of the module, the DSP is running at 360 MHz, but if more performance is required

in the future, the DSP clock speed can be increased to 1 GHz. Although all of the current

code is written in C and assembly, code can be generated from MATLAB using the Real-

Time Workshop Embedded Coder. This will allow control engineers using the module to

change control algorithms using tools they are familiar with.

3.1 DSP Peripherals

The DSP has two 4 MB flash EEPROM modules connected via the same memory bus

the FPGA uses. The first is an 8-bit wide memory divided into four 1 MB pages and

is used to store the programs. After reset, the DSP checks the status of two of the host

processor output pins to determine which program it should boot. Then, it sets the page

of the program ROM accordingly and loads the program into internal RAM. The second

21

module is 16 bits wide and is divided into two 2 MB pages. It is used as storage for large

lookup tables and any measurements that need to be stored in non-volatile memory, but

need to be accessed quickly. The current program stores a 16-bit sine lookup table and the

measured cavity transfer function in this ROM.

One of the DSP’s serial ports is connected to a Texas Instruments DAC8554 4-output

digital-to-analog converter. The DAC has a maximum sample rate of 200 KSPS on all

outputs [17]. Output A is used to produce driving signal for the cavity’s piezoelectric tuner,

and output B can be used to produce a slow tuning signal, which can be used to compensate

for slow drifts in the resonant frequency of the cavity. The other two outputs are currently

unused and are available for future applications. The cavity tuner signals are connected to

an operational amplifier to amplify their signals.

Although the DSP has 1 MB of internal RAM, an external 16 MB SDRAM is provided

in case future programs need more memory for their calculations. The SDRAM is 32-bits

wide and operates at 125 MHz.

The DSP printed circuit board also includes a temperature sensor to measure the tem-

perature inside the module. It is used as a status indicator to signal if the module is not

getting enough airflow to prevent overheating.

3.2 Control Program Overview

The control program is set up as a multi-threaded program; with each thread being triggered

by a different hardware or software interrupt as necessary. Higher priority interrupts are

allowed to preempt lower priority threads. Receiving a data word from the host processor

22

triggers the highest priority thread. The main control thread has the second highest priority,

and is triggered by a counter, so that it runs at fixed intervals. The final hardware-triggered

thread runs much less frequently than the other two, and does some low-priority status

calculations. The threads triggered by software interrupts are used for routines that take a

long time to perform and need to be done outside the hardware interrupt threads to prevent

them from missing their deadlines.

3.3 Data Received From Host Processor

The serial connection between the DSP and host processor is full duplex and uses the same

clock and synchronization signals for data traveling in both directions [18]. This means that

the DSP must have data buffered and ready to transmit back to the host processor when

the next word is received, because data is transmitted simultaneously in both directions

as shown in Table 3.1. If the DSP is unable to respond to a command before the next

command is received, incorrect data could be displayed on the user interface, so the thread

that processes host commands was given the highest possible priority. This guarantees that

the DSP will finish processing the current command and have a response ready for the host

processor before the next command is received.

Each data word sent between the DSP and host processor is 32-bits, and is sent most

significant bit first over the host processor’s SPI port. Each command from the host is

broken into three parts: the first bit is a 0 for a write and 1 for a read (this bit is ignored

for read-only registers), the next 15 bits are a register address, and the last 16 bits are an

optional argument. The exception to this format is when the host is sending a new program

23

Table 3.1. Responses from the DSP are received by the host two words after the command
was transmitted.

Transmission Word Command to DSP Response to DSP
1 Command 1 Null Response
2 Command 2 Null Response
3 Command 3 Response 1
4 Command 4 Response 2
5 Command 5 Response 3
6 Command 6 Response 4
7 Command 7 Response 5
8 Null Command Response 6
9 Null Command Response 7

to the DSP. In this case, the host initiates the transfer by writing the program number and

block number to register 0x0102, and then it sends a 64 kB block of the new program to

the DSP. After the block of data is done being programmed, the host processor repeats the

process for the remaining blocks (if necessary).

The DSP response format varies depending on the command it has received. If it re-

ceives a command to update a setting, it echoes back the setting to acknowledge that the

setting has been updated, or in cases where the setting cannot be changed, the DSP replies

with −1. If the host processor reads a register, the DSP simply sends back the value of that

register in whatever format it uses for calculations; the host must then convert the value to

a meaningful format before sending it to the GUI.

3.4 Control Thread

The control thread has the second-highest priority. It runs at fixed intervals based on one

of the DSP’s internal timers. In the current setup, this thread runs 16,387 times per second,

24

but the timer can be modified to run at virtually any interval. The primary tasks for this

thread are to perform the phase PID, amplitude PID, and adaptive feedforward cancellation

(AFC) algorithms. Additional lower priority tasks are performed by other threads..

The control thread begins by reading the phase and amplitude of each input channel

from the FPGA. It also stores the I and Q values of the cavity output in a buffer so that a

fast Fourier transform (FFT) can be computed. If the FFT buffer is full, this thread posts

the software interrupt that initiates calculation of the FFT. The FFT is used to identify

low frequency (0 to 1000 Hz) sinusoidal disturbances affecting the cavity. Next, if a user

is tuning the PID parameters and has pulsing enabled, the thread takes care of switching

between the two phase or amplitude set points. After this is done, the thread runs the PID,

cavity transfer function measurement, and AFC algorithms (if enabled) and updates the

output phase and amplitude and sets the fast tuner. The cavity transfer function cannot

be calculated correctly if either PID or AFC control is enabled, so logic is implemented

to prevent them from being enabled at the same time. This is because the cavity transfer

function algorithm assumes the cavities RF input has constant amplitude and phase, and it

uses the fast tuner output to shake the cavity.

3.5 Status Thread

The final hardware thread runs much less frequently than the other two, and performs some

low-priority tasks. It is triggered by a read from the ADC connected to the temperature

sensor on the DSP’s circuit board. The read occurs at the maximum possible interval al-

lowed by the DSP’s serial port hardware. This thread calculates the board temperature in

25

Celsius and the average DSP load over the previous interval and stores the values until the

host processor requests them.

3.6 Software Interrupts

There are several threads that are implemented as software interrupts. They are used to

perform tasks that take a long time to run and are not time critical. If any of these tasks were

implemented within the hardware threads that initiate them, the hardware thread would fail

to complete in its allotted time.

The highest priority software thread is the one that computes an FFT on a set of complex

data samples. It is based on the DSP fft16x32 function included with the DSP program-

ming tools [19]. The function computes an FFT on 32-bit complex data samples and uses

a 16-bit “twiddle factor” look-up table to speed up processing. There are two versions of

this function included with the DSP programming tools. The first is a hand-optimized as-

sembly language version that is extremely fast, but is not interruptible. The second is an

implementation of the same algorithm written in C. Although the C version is not as fast as

the optimized version, it is interruptible, and is therefore the better choice for this system.

The FFT has complex output, but we are only interested in seeing the magnitude response

in the GUI, so as a final step, the FFT thread runs a 32-bit CORDIC routine on the complex

FFT output to find the magnitude for each frequency. The output is saved until the host

processor reads it and initializes the next FFT calculation.

The last two threads are used to program memory into the flash EEPROMs that are

connected to the DSP. One thread programs the measured cavity transfer function into

26

ROM, so it is not lost at reset or power down. The other thread programs a 64 KB block of

the program ROM. Although these threads have almost no calculations in them, they take

the longest to complete. Before programming a ROM, the corresponding memory block

must be erased, which typically takes around 800 ms. Then, each word can be programmed

at a typical rate of approximately 10 µs [20]. As a result, the time spent in these threads is

mostly spent in an idle loop, polling the ROMs to find out when they are ready for the next

word to be programmed.

27

CHAPTER 4

Control

4.1 RF Amplitude and Phase Control

Cavity control is typically done using a PI controller, so a PID control was implemented to

control the RF output, using feedback via the controller’s cavity input. The DSP program

allows separate PID control of the phase and amplitude of the signal, and some other tools

have been included in the GUI to ease the PID tuning process. When operating at RF

frequencies near a cavity’s resonant frequency, the cavity behaves approximately linearly,

so we can model the relationship between the RF driving signal and the cavity output using

a transfer function. Figure 4.1 shows the closed-loop system. During operation, the RF

frequency is fixed, but the amplitude and phase can be adjusted. Therefore, the system

input and output are complex numbers. Since the system has a pole at s = 0, the system is

type 1 and values can be chosen for kp, ki, and kd to ensure the system response to a step

input has zero steady-state error [21].

The transfer functions of the cavities being controlled vary dependent on the cavity

type and amplifier system used, so the PID parameters must be tuned when equipment is

changed. This tuning has historically been done by manually turning the RF output on

and off, measuring the system response, and adjusting the PID parameters as necessary.

28

G(s)

complex
output

complex
set point

+
-

kps+ki+kdss
s

2

plantcontroller

Figure 4.1. Block diagram of PID control. The cavity behaves linearly when operating near
its resonant frequency, so it can be approximated by the transfer function, G(s).

The DSP speeds up this process by automatically stepping between two set points and

displaying the step response in the GUI. As the users change the PID parameters, they can

immediately see the change in the system response. The PID loop compensates for small

non-linearities and slowly varying drifts.

4.2 Cavity Tuning

We expect that most disturbances, not controlled by the PID alone, that will affect the

cavities in the reaccelerator will be of the narrowband sinusoidal variety and due to rotating

machinery, such as vacuum pumps. In order to cancel out these disturbances, the adaptive

feedforward control developed by Tarek Kandil [22] was implemented in this module. The

DSP is programmed to cancel disturbances at up to 10 frequencies. A block diagram of

a single-frequency control is shown in Figure 4.2. GT (s) is the transfer function from the

cavity tuner output to the phase error seen in the cavity output signal. The tuner has the

affect of shifting the cavity resonant frequency, which results in an error in amplitude and

phase as seen by the controller. When operating at RF frequencies near the cavity resonant

29

Figure 4.2. Adaptive feedforward cancellation control for the cancellation of a single sinu-
soidal disturbance [22].

frequency, a given change in tuner output has a relatively large effect on the phase error

compared to its effect on the amplitude error, so the phase error is used for the adaptive

feedforward cancellation algorithm.

The disturbances we expect to encounter are made up of multiple sinusoidal signals:

d =
n

∑
i=1

Aisin(ωit +βi)
de f
=

n

∑
i=1

aicos(ωit)+bisin(ωit) (4.1)

Before the adaptive feedforward cancellation algorithm can be applied, we need to know

the frequency of the disturbance to be cancelled and the phase of GT (s) at that frequency.

To calculate the phase of GT (s), we start with the RF amplitude and phase set to fixed

values (PID disabled), and drive the tuner while measuring the cavity response. The tuner is

driven in 1 Hz increments from 1 Hz to 1 kHz, and the magnitude and phase response of the

30

cavity phase error is measured at each frequency. The measured Bode plot is representative

of the system transfer function, GT (s). The plot is stored in non-volatile memory so it is not

necessary to calculate it every time the controller is powered down or reset. The disturbance

filters use this information from the measured Bode plot to stably apply the feed-forward

algorithm. The value of each ωi is determined by performing an FFT on the cavity error

signal ψ and looking for the frequencies with the highest magnitudes. However, ai and bi

are unknown, and must be estimated. We estimate these two parameters by multiplying the

error signal by a gain factor and two orthogonal signals of known phase and then integrating

the results. The control output is then created from the estimated values as:

u =
n

∑
i=1

âicos(ωit)+ b̂isin(ωit)
de f
=

n

∑
i=1

Âisin
(

ωit + β̂i

)
(4.2)

As long as the measured phase delay θ is within 90◦ of the actual phase delay and γ is

chosen sufficiently small, the estimated values âi and b̂i will converge to the actual values

ai and bi, as shown in Chapter 3 of [22]. γ controls the rate at which the estimated param-

eters adapt to changes in the actual values, so increasing γ can cause the control to also

dampen disturbances that are close in frequency to ωi [23]. This occurs because the large γ

allows the adaptive parameters to continuously change phase to match the frequency of the

disturbance, even though it is not the exact frequency the algorithm is set up to cancel.

31

CHAPTER 5

The ZWorld RabbitCore Host Processor

and Graphical User Interface

The ZWorld RabbitCore 3200 microprocessor acts as the host processor for the module.

The RabbitCore 3200 was selected because of the large amount of code already developed

for it for other systems at the NSCL, but any other processor that supports the serial periph-

eral interface (SPI) protocol and has a sufficient number of I/O pins could be used instead.

The host performs initial chip configuration for all the integrated circuits used in the mod-

ule. After configuration is complete, the host processor acts as an interface between the

GUI and the DSP. It forwards commands received via its network interface to the DSP

and passes data received from the DSP over Ethernet back to the GUI. In addition, it also

supplies an interface based on the Modbus protocol to the main EPICS control system [8].

5.1 Module Initialization

After the system powers up, the host processor must initialize all of the other chips in the

module. Most of this is done using the SPI before data transfer can begin. The high-speed

ADCs must be set from test mode to normal operating mode, and the phase-locked loop

32

must be set to the correct multiplier value. The SPI interface is also used to program the

FPGA. The RabbitCore module contains a large enough flash ROM to hold both its code

and the FPGA’s code in compressed format, so it is not necessary to download the FPGA

code every time the module is powered up.

After the first three initialization steps are completed, the SPI is used for transmitting

commands and data between the host processor and the DSP. The DSP has its own non-

volatile memory for program storage, so the host processor does not need to send the DSP

its program at startup as it does with the FPGA. The DSP is set up to select between up to

four programs when it is reset to make testing and debugging easier. When modifications

are made to the DSP program, the new code can be downloaded without erasing the previ-

ous versions. Programmers can then quickly switch between different versions of the code

to verify that bugs in one version are not present in others. In its initial boot stages, the

DSP checks the status of two of the RabbitCore’s output pins to determine which program

to load.

5.2 User Interface

After module initialization is complete, the host processor’s primary task is to act as an

interface between the user and the DSP. It passes user commands to the DSP using its SPI

interface and passes data back to the user. Unlike previous versions of this project, which

used a telnet interface, this version has a graphical user interface. It was written in QT so

that it will compile and run on all major operating systems [24]. The GUI is much easier

to use than the older telnet interface, since the user no longer needs to memorize all of the

33

commands. The GUI also has much more functionality, since it can display graphs of the

input, cavity transfer function, and FFT of the cavity output.

5.3 Main Screen

A screenshot of the main controller screen is shown in Figure 5.1. The top part of the

screen shows the amplitude and phase of each input channel. The phase is shown relative

to the reference channel, and the reference phase is always shown as 0.

Below the input status is the attenuator setting. It accepts values between 0 dB and

63 dB. For maximum measurement accuracy, the attenuator should be set to a value that

allows the inputs to be as close as possible to 2.3 V without going over.

Below the attenuator box are the RF output control settings. In the open-loop mode, I

and Q values are calculated from the phase and amplitude set points and are sent directly

to the high-speed output DAC. In the closed-loop mode, a PID control algorithm is used to

set the cavity output to the desired settings. The phase and amplitude controls can be set to

open-loop or closed-loop independently of each other.

The two graphs on the bottom show the CPU load for the DSP and the ZWorld host

processor. The DSP load should appear fairly constant, with the exception that it will spike

to 100% when calculating an FFT or writing data to a ROM. The spikes are normal and will

not affect the ability of the DSP to run the control algorithms, because the control thread

has higher priority than the other threads and will interrupt them as necessary.

The ZWorld Save button saves the current settings as the defaults to load after a power

up or reset. The settings include all settings on the main screen, PID screen, and AFC

34

Figure 5.1. Main controller screen.

35

screen, with the exception of the RF On/Off status. The RF is always off by default after

power up. The ZWorld Reload button returns all settings to their defaults without resetting

the system. The ZWorld Reset and DSP Reset buttons allow individual resets of the ZWorld

host processor and DSP. The DSP Reset button also allows the user to select which program

to run on the DSP. The DSP can hold four different programs in separate pages of its

program ROM. This allows new DSP code to be downloaded to the DSP’s program ROM

without overwriting the previous version of the program. If there is a problem with the

new program, the DSP can be reset and told to reload the old version without putting the

module into an unusable state. The rest of the buttons open screens discussed below.

5.4 PID Screen

The PID tuning screen was designed to ease tuning of the PID control loops by making

it possible to see the system response in real-time as the control parameters are modified.

The phase and amplitude PID control constants can be tuned independently of each other.

To see the response of the cavity, the user simply has to set a nominal and pulsed value

and click the run button to start stepping between the two set points. The controller will

automatically step between the two set points and the GUI will show the step response.

The stepping frequency can be changed to affect how much of the waveform appears on

the screen at a time. Figure 5.2 shows the amplitude PID being tuned. It is best to turn off

the AFC algorithm when tuning the PID parameters, because the error signal affects both

the PID and AFC algorithms. Although the DSP code was written to minimize the effect

of the step signal on the AFC algorithm, there is still some ringing produced by the tuner if

36

Figure 5.2. PID tuning screen.

it is enabled while tuning the PID parameters.

5.5 AFC Screens

There are three main parts of the AFC screens, the FFT magnitude plot, cavity transfer

function, and the AFC cancellation screen. The DSP measures the cavity transfer function

by outputting a sine wave on the cavity tuner and measuring the cavity’s response. The

tuner output is swept from 1 Hz to 1 kHz to produce the graphs shown in the GUI. The

cavity transfer function is also stored in non-volatile memory to prevent it from being lost

37

Figure 5.3. AFC screen.

during a reset. Automatic disturbance detection and cancellation has not been implemented

yet, so it is up to the user to identify the frequencies at which disturbances are occurring.

This is done by finding peaks on the FFT magnitude plot and entering their frequency

into the AFC Cancellation Frequency box. The DSP automatically loads the previously

calculated cavity phase delay for that frequency, and when enabled, outputs a disturbance

cancellation signal at the selected frequency. Up to 10 frequencies can be enabled at a once.

There are master enable and disable buttons for the tuner, which can be used to enable or

disable the tuner without having to manually select every cancellation frequency.

38

Figure 5.4. FFT screen shows FFT of cavity output in dBm, cavity magnitude response,
and cavity phase response in degrees. All plots show 0 to 1000 Hz linear scale.

39

Figure 5.5. Startup screen.

5.6 Startup Screen

The module has a start-up mode, where its RF output gradually ramps to its set point after

enabled. The user can specify an initial RF output level, the amount of time to stay at that

level, and a ramp time to the amplitude set point. This feature allows the RF system to

tune-up gradually before going full-scale and removes the initial overshoot that will occur

if the PID parameters are under damped.

5.7 Advanced Screen

The Advanced screen contains features that are not used during normal operation. This

screen contains buttons for downloading a new DSP program and calibrating the input

channels. Program download is done over Ethernet, and can be done without affecting

the program currently running on the controller. The DSP’s program ROM can contain up

to four independent programs, so a new program can be downloaded without overwriting

40

Figure 5.6. Advanced screen.

the one that is being run. When a program is being sent to the DSP, the GUI screens will

temporarily stop updating, and commands sent via the GUI will be queued, but the module

will continue to run as normal. When the download completes, GUI updates will resume

and any queued commands will be sent to the module.

The channel calibration button will run a software routine that attempts to remove any

constant phase or amplitude measurement errors between the three input channels, when it

is implemented. These errors are primarily caused by slightly mismatched impedances on

the input channels on the PCB, which prevent the amplifiers and attenuators from perform-

ing ideally. These variances cause each of the input channels to have a slightly different

level of gain, which results in a fixed error factor between channels. Similarly, the digital

attenuators do not attenuate in exact 0.5 dB steps, so at different levels of attenuation the

amplitude error may vary. Also, during testing, a very small amount of phase error was

measured depending on the attenuation setting for the digital attenuators.

41

CHAPTER 6

Testing and Performance

6.1 Cavity Simulation Circuit

SRF cavities are rarely available for testing purposes, so I built a test circuit to simulate

a cavity with a known transfer function and known disturbances. A block diagram of the

simulation circuit is shown in Figure 6.1. The test circuit has inputs for a disturbance

signal, tuner signal from the LLRF controller, and the RF output from the LLRF controller.

The disturbance signal and tuner signal are added together with a fixed DC voltage offset

after the tuner signal passes through a transfer function block. The transfer function is

designed to simulate a mass-spring model of the tuner arm. The DC offset is necessary to

prevent the simulated disturbance signal from changing signs before it is multiplied with

the RF signal, since a sign change would result in a 180◦ jump in phase of the output

signal. In a real cavity, the disturbances cause the cavity resonant frequency to shift away

from the driving frequency, in both amplitude and phase error. The phase error is typically

used for disturbance identification, because it is relatively large compared to the amplitude

error. The changes in phase cannot be easily modeled in a test circuit, so the test circuit

simply performs amplitude modulation by multiplying the RF signal with the sum of the

disturbance and tuner signals and the amplitude error is used for disturbance identification.

42

Figure 6.1. Block diagram of circuit used for cavity simulation. The two transfer functions
are replaceable RC networks.

After modulation, the RF signal passes through another transfer function block before being

amplified and sent back to the LLRF controller.

In order for the controller to perform the adaptive feedforward algorithm described in

Section 4.2, it must be able to accurately calculate the phase response of the cavity. To test

this, several different transfer function models were placed in the circuit, and MATLAB

was used to calculate the phase response of the system. Each transfer function module

consists of an RC network as shown in Figure 6.2.

By defining x1 as the voltage across capacitor C1 and x2 as the output voltage, we can

write the circuit’s state equations [25]:

ẋ1 =
u− x1

C1R1
+

x1− x2

C1R2
(6.1)

43

Figure 6.2. Each of the transfer function blocks is made up of a replaceable RC network.

ẋ2 =
x1− x2

C2R2
(6.2)

y = x2 (6.3)

The state model is then:

ẋ =

 R1−R2
C1R1R2

−1
C1R1

1
C2R2

−1
C2R2

x+

 −1
C1R1

0

u (6.4)

y =
[

0 1

]
x (6.5)

This leads to a transfer function of:

H (s) =
1

C1C2R1R2s2 +(C1R1 +C2R1 +C2R2)s+1
(6.6)

Using this information, MATLAB can calculate the ideal phase response of the ampli-

tude error of the circuit, which can then be compared to the phase response of the amplitude

44

error as calculated by the LLRF controller. The LLRF controller calculates the phase re-

sponse of the amplitude error signal by slowly sweeping its fast tuner output from 0 Hz to

1 kHz. For each frequency, it records the incoming RF amplitude at four points, spaced

90 degrees apart, from which it can calculate the phase and magnitude response. During

cavity sweep, there is assumed to be no disturbance and ωT is much smaller than ωRF , so

the circuit’s output can be approximated as:

VOut =
(
AT sin(ωT)G1 (jωT)+VO f f set

)
ARFsin(ωRF)G2 (jωRF) (6.7)

Since ωT is much smaller than ωRF , the tuner component can be viewed as a scaling con-

stant on the RF signal, and the tuner input will cause a sinusoidal error in the amplitude

of the RF output. Therefore, for the test circuit, GT (Figure 4.2) can be approximated by

G1(s). Figures 6.3 and 6.4 show the ideal amplitude and phase response and the response

calculated by the LLRF controller in the presence of the disturbances it will attempt to

cancel. The phase plots match very closely, with the calculated plot staying within approx-

imately five degrees of the ideal plot for frequencies below 500 Hz and within ten degrees

for frequencies between 500 Hz and 1,000 Hz. The saw tooth pattern seen in the plot cre-

ated by the LLRF controller starting at about 600 Hz is an artifact of algorithm used to

calculate the phase. To speed processing and make sure there were no errors in the original

implementation of the phase calculation algorithm, the algorithm was implemented using

integer intermediate values, instead of floating point variables. Although the phase calcu-

lation is accurate enough for the AFC algorithm to work, it can be made more accurate by

using more precise intermediate results or filtering the output data to produce a smoother

45

Figure 6.3. Ideal magnitude response (top) and magnitude response calculated by LLRF
controller (bottom).

curve; so later versions of the DSP code will be modified to do so.

After verifying that the cavity transfer function calculation was accurate enough to work

with the AFC algorithm, the controller was tested with known disturbances. In testing, the

AFC algorithm was able to reduce the effect of disturbances to the noise floor with an

appropriate value of the adaptation gain γ, regardless of the amplitude of the disturbance.

Increasing the value of γ improves the effectiveness of the AFC algorithm by allowing the

estimated parameters to converge faster to the actual parameters (Figure 6.5), but setting γ

46

Figure 6.4. Ideal phase response (top) and phase response calculated by LLRF controller
(bottom).

47

too high can cause instability, so its value must be chosen carefully. The spikes seen at 189

Hz, 378 Hz, and 568 Hz are caused by some unterminated digital connections within the

controller. Those connections will be fixed in the next update of the circuit board.

48

No disturbance cancellation.

AFC cancellation at 60 Hz, γ = 0.125. Disturbance power is reduced to 1
16 of its original level.

AFC cancellation at 60 Hz, γ = 0.25. Disturbance power is reduced to 1
64 of its original level.

Figure 6.5. FFT of RF input with 60 Hz sinusoidal disturbance. Because the magnitude of
the disturbance is large, its third harmonic is also present.

49

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

A new prototype LLRF controller has been created for use with high-Q superconducting

cavities. In addition to the digital PID amplitude and phase control provided by typical

LLRF controllers, the new prototype implements an adaptive feedforward cancellation al-

gorithm for microphonics mitigation with a piezoelectric tuner, and is the first LLRF con-

troller to do so. Microphonics mitigation is necessary, because the narrow bandwidth of

high-Q cavities allows microphonics to perturb the resonant frequency of the cavity too far

for the PID feedback control alone to work.

Testing was done to make sure that the AFC control does not conflict with the LLRF

amplitude and phase control, and there were no conflicts during normal operation. How-

ever, during PID tuning the AFC can make it difficult to select the correct parameters.

During PID tuning, the RF output steps between two set points so the system response can

be seen. If the AFC control is enabled when tuning, it also tries to compensate for the

error, since the step function has components at all frequencies. The result is what appears

to be some ringing after each set point transition. Although steps were taken in software to

minimize the effect on the AFC algorithm, it is currently not possible to completely prevent

50

the change in output set point from affecting the AFC algorithm.

7.2 Required Changes

Although the LLRF controller was shown to work in testing, there are several modifications

that need to be made to the DSP daughter card before the module is ready for production.

The biggest problem with the current version of the circuit board is that it runs very hot.

The DSP and its voltage regulator are both designed to dissipate heat through the circuit

board. However, the circuit board is simply not large enough to get enough airflow for

the heat generated. On the prototype, heat sinks were added to the DSP and the voltage

regulator to attempt to solve the problem. The heat sink on the DSP was able to sufficiently

cool it, but there is not enough surface area on the top of the voltage regulator to add a

sufficiently large heat sink to it. In order to solve the cooling problem, the DSP daughter

card must be increased in area, and the voltage regulator should be moved farther from the

DSP, since those two ICs produce almost all of the heat on the board.

In addition to the cooling problem, there were several minor errors made in the board

schematic that made their way into the board layout. There were three pull-up resistors on

the control lines for the DSP external memory interface that were mistakenly connected

to ground instead of +3.3 V. Also, when programming the EEPROMs, it was found that

it is better to let the software check the status of the EEPROMs during program and erase

than to use the hardware control pins, so the busy pins should be disconnected from the

EEPROMs.

Finally, DIP switches should be added to make it easier to change DSP hardware set-

51

tings. Switches should be added for the following settings: DSP clock multiplier, JTAG

mode, DSP endian mode, DSP boot mode, SDRAM clock select, EEPROM and FPGA

clock select, and default program.

7.3 Future Hardware Upgrades

During software development, several potential changes to the hardware were identified

that would help improve data flow within the module as well as make sure that parts are

available in the future. The FPGA currently used in the module is a Xilinx Spartan-II,

which is an older model, which is not as fast and does not have as much logic as the newer

Spartan-3 and Spartan-3E FPGAs. The Spartan-II will likely be phased out in the next few

years, so it will be a good idea to migrate to the newer model.

Several signal routing changes could be made to the module to improve device utiliza-

tion. There is an 8-pin DIP switch used to set the device address. In the current version,

it is connected through the FPGA to the host processor. By connecting the DIP switch di-

rectly to the host processor, 16 FPGA I/O pins would be freed. By connecting these pins to

the DSP to change its interface from 16 bits to 32 bits wide, the data throughput would be

doubled. Currently, the DSP and host processor both have a free serial port, which could

be connected to each other. The addition of a second serial connection between the de-

vices would allow the large block data transfers (program download, FFT plot, etc.) and

the control commands to be sent on different serial ports. Doing so would remove the lag

in response to user commands during block transfers, since the host processor would no

longer have to wait until the block transfer finishes to send the command.

52

The pass band of the RF output filter must be chosen based on the operating frequency

range of the module. The current version of the RF circuit board accepts filters in the

YY161 surface-mount package, but for higher frequencies there is not a very good selection

of available filters. As a result, for some applications, it is necessary to add an external filter

on the output to get adequate filtering. By changing the board layout to accept filters in a

more common package, the need for external filters can be eliminated for the whole range

of frequencies the module is designed to work with (2 MHz to 1.5 GHz).

7.4 Future Software Upgrades

In future versions of the LLRF control, the PID feedback control will be combined with

a feedforward control to improve the system response. This will allow higher gain PID

parameters to be used to improve accuracy without affecting the stability of the system.

In addition, integrator anti-windup will be implemented to prevent the system output from

saturating.

53

APPENDICES

54

APPENDIX A

FPGA Implementation of a CORDIC

Algorithm

/**/
/* CORDIC section (written in Verilog) */
/* */
/* A 16-bit CORDIC routine is used to convert sampled I/Q values */
/* for each input channel to phase/magnitude (’A’ registers). A */
/* second implementation operates in the reverse direction to */
/* convert the desired output phase and magnitude to I/Q (’O’ */
/* registers). */
/**/
// Counter to keep track of stage of routine
reg [3:0] ctr;

// Phase look-up table
// Each bit is 360 / 65536 degrees
wire [14:0] lut;
wire [15:0] lutn; // Negative of look-up table
assign lutn = -lut;

ROM16X1 #(.INIT(16’h8000)) lut14 (.O(lut[14]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));

ROM16X1 #(.INIT(16’h0001)) lut13 (.O(lut[13]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));

ROM16X1 #(.INIT(16’h0002)) lut12 (.O(lut[12]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));

ROM16X1 #(.INIT(16’h0004)) lut11 (.O(lut[11]), .A0(ctr[0]),

55

.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h0008)) lut10 (.O(lut[10]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));

ROM16X1 #(.INIT(16’h0012)) lut9 (.O(lut[9]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h002C)) lut8 (.O(lut[8]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h0056)) lut7 (.O(lut[7]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h00A6)) lut6 (.O(lut[6]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h0146)) lut5 (.O(lut[5]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h028C)) lut4 (.O(lut[4]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h0514)) lut3 (.O(lut[3]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h0A22)) lut2 (.O(lut[2]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h1474)) lut1 (.O(lut[1]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));
ROM16X1 #(.INIT(16’h79DC)) lut0 (.O(lut[0]), .A0(ctr[0]),
.A1(ctr[1]), .A2(ctr[2]), .A3(ctr[3]));

// Input I and Q read from high-speed ADC
reg [15:0] AI, AQ;

// Input registers written by DSP
reg [15:0] Op, Oa; // Output phase and amplitude

// CORDIC outputs
reg [15:0] Ap, Aa; // Input phase and amplitude
reg [13:0] OI, OQ; // Output I and Q

// Intermediate values
reg [15:0] AI2;
reg signed [15:0] AQ2;
reg [15:0] Ap2;
reg signed [15:0] OI2, OQ2;
reg [15:0] Op2;

// Possible values for first stage of CORDIC routines
wire [15:0] AI1;
wire signed [15:0] AQ1;
wire signed [15:0] OQ1;

56

// Possible values for stages 2-16 of CORDIC routines
wire [15:0] AI3;
wire signed [15:0] AQ3;
wire signed [15:0] OI3, OQ3;

// First stage depends on the sign of the input Q value
assign AI1 = AQ[15] ? -AQ : AQ;
assign AQ1 = AQ[15] ? AI : -AI;

// First stage depends on the sign of the input phase
assign OQ1 = Op[15] ? -Oa : Oa;

// Stages 2-16 depend on the sign of the intermediate Q value
assign AI3 = AQ2[15] ? (AI2 - (AQ2 >>> ctr)) :
(AI2 + (AQ2 >>> ctr));

assign AQ3 = AQ2[15] ? (AQ2 + (AI2 >> ctr)) : (AQ2 - (AI2 >> ctr));

// Stages 2-16 depend on the sign of the intermediate phase value
assign OI3 = Op2[15] ? (OI2 + (OQ2 >>> ctr)) :
(OI2 - (OQ2 >>> ctr));

assign OQ3 = Op2[15] ? (OQ2 - (OI2 >>> ctr)) :
(OQ2 + (OI2 >>> ctr));

always @(posedge clk40out)
begin
ctr <= ctr + 1;

// First stage: shift input +90 or -90 degrees
// First stage occurs when counter = -1
if (&ctr)
begin

AI2 <= AI1;
AQ2 <= AQ1;
Ap2 <= AQ[15] ? lutn : lut;
OI2 <= 16’h0000;
OQ2 <= OQ1;
Op2 <= Op[15] ? (Op + lut) : (Op + lutn);

// Store completed conversion values from last clock cycle
Ap <= Ap2;
Aa <= AI2;

// Store completed conversion values from last clock cycle
OI <= OI2;

57

OQ <= OQ2;
end

// stage 2-16: perform shift and update intermediate registers
else
begin

AI2 <= AI3;
AQ2 <= AQ3;
Ap2 <= AQ2[15] ? (Ap2 + lutn) : (Ap2 + lut);

OI2 <= OI3;
OQ2 <= OQ3;
Op2 <= Op2[15] ? (Op2 + lut) : (Op2 + lutn);

end
end

58

APPENDIX B

DSP Daughter Board Schematics

59

~RESET
NMI

AECLKIN

Power/Clocks
Sheet1.SchDoc

AECLKIN

SDRAM
Sheet5.SchDoc

SCLK0
DX0
DR0
DSPEN

CLK40

DSPGP1
DSPGP2
DSPGP3
DSPGP4

LOCKED

PROG_PAGE
BOOT_PAGE1
BOOT_PAGE0

FASTTUNE

SLOWTUNE

DSP GPIO/Serial
Sheet3.SchDoc

BA1
BA2
BA3
BA4
BA5
R/~W
BD0
BD1
BD2
BD3
BD4
BD5
BD6
BD7
BD8

BD10
BD9

BD11
BD12
BD13
BD14
BD15
~BCE0
~RESET

BOOT_PAGE0
BOOT_PAGE1

PROG_PAGE

ROM/FPGA Interface
Sheet4.SchDoc

DSP Power
Sheet2.SchDoc

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

J1

CON40

+12V-12V +6V

1
2
3
4

PL1

Header 4

S1
SW-
SPST

Figure B.1. System Overview.

60

R
35

25
0K

D
V

D
D

C
V

D
D

R
49

10
0

L2 B
LM

21
PG

22
1S

N

D
V

D
D

A
EC

LK
IN

I
1

GND 2

O
3

E1 EX
C

C
ET

10
3U

R
37

Tr
im

D
V

D
D

~R
ES

ET

D
SP

C
LK

IN
H

4

C
LK

M
O

D
E1

G
1

C
LK

M
O

D
E0

H
2

N
M

I
B

4
~R

ES
ET

A
C

7

PL
LV

J6

U
1M

TM
S3

20
C6

41
4T

G
LZ

R
34 25
0K

V
s

1
V

ou
t

2

Gnd 3

U
7

A
D

58
0

2.
5V

R
EF

G
N

D
1

V
IN

1
2

V
IN

1
3

NC4

M
R

2
5

M
R

1
6

EN
7

SE
Q

8

G
N

D
9

V
IN

2
10

V
IN

2
11

G
N

D
12

G
N

D
13

V
O

U
T2

14

V
O

U
T2

15

V
SE

N
SE

2
16

NC17

R
ES

ET
18

PG
1

19

NC20 V
SE

N
SE

1
21

V
O

U
T1

22

V
O

U
T1

23

G
N

D
24

U
6

D
SP

 T
im

er

TI
N

P2
C

5
TO

U
T2

A
4

TO
U

T0
D

6
TO

U
T1

B
5

TI
N

P0
C

6
TI

N
P1

A
5

U
1L

TM
S3

20
C6

41
4T

G
LZ

+6
V

+6
V

N
M

I

EO
H

1
G

N
D

2
O

U
T

3
V

C
C

4
U

10

C
B3

LV
-3

I-1
25

M
00

00

C
69

10
0u

F

C
72

10
0u

F

C
73

10
0u

F

C
78

10
uF

C
67

10
uF

C
70

1u
F

C
71

1u
F

C
68

.1
uF

C
77

.1
uF

C
75

.1
uF

50
 M

H
z

R
38

10
0

L1 B
LM

21
PG

22
1S

N

D
V

D
D

EO
H

1
G

N
D

2
O

U
T

3
V

C
C

4
U

9

C
B3

LV
-3

I-5
0M

00
00

C
74

.1
uF

A1 B
2

C 3

JP
4

SM
T

1K

A1 B
2

C 3

JP
3

SM
T

1K

D
V

D
D

D
V

D
D

Figure B.2. Voltage regulation and clock generation.

61

DVDD

CVDD

DVDD A2

DVDD A25

DVDD B1

DVDD B14

DVDD B26

DVDD E7

DVDD E8

DVDD E10

DVDD E17

DVDD E19

DVDD E20

DVDD F3

DVDD F9

DVDD F12

DVDD F15

DVDD F18

DVDD G5

DVDD G22

DVDD H5

DVDD H22

DVDD J21

DVDD K5

DVDD K22

DVDD L5

DVDD M5

DVDD M6

DVDD M21

DVDD N2

DVDD P25

DVDD R5

DVDD R21

DVDD T5

DVDD U5

DVDD U22

DVDD V6

DVDD V21

DVDD W5

DVDD W22

DVDD Y5

DVDD Y22

DVDD AA9

DVDD AA12

DVDD AA15

DVDD AA18

DVDD AB7

DVDD AB8

DVDD AB10

DVDD AB17

DVDD AB19

DVDD AB20

DVDD AE1

DVDD AE26

DVDD AF2

DVDD AF25

DSP I/O
Supply

DVDD AE13

U1A

TMS320C6414TGLZ

CVDD A1

CVDD A26

CVDD B2

CVDD B25

CVDD C3

CVDD C24

CVDD D4

CVDD D23

CVDD E5

CVDD E22

CVDD F6

CVDD F7

CVDD F20

CVDD F21

CVDD G6

CVDD G7

CVDD G8

CVDD G10

CVDD G11

CVDD G13

CVDD G16

CVDD G17

CVDD G19

CVDD G20

CVDD G21

CVDD H20

CVDD K7

CVDD K20

CVDD L7

CVDD L20

CVDD N7

CVDD P20

CVDD T7

CVDD T20

CVDD U7

CVDD U20

CVDD W7

CVDD W20

CVDD Y6

CVDD Y7

CVDD Y8

CVDD Y10

CVDD Y11

CVDD Y14

CVDD Y16

CVDD Y17

CVDD Y19

CVDD Y20

CVDD Y21

CVDD AA6

CVDD AA7

CVDD AA20

CVDD AA21

CVDD AB5

CVDD AB22

CVDD AC4

CVDD AC23

CVDD AD3

CVDD AD24

CVDD AE2

CVDD AE25

CVDD AF1

CVDD AF26

DSP CoreU1B

TMS320C6414TGLZ

DSP GND

GNDA8

GNDA19

GNDB3

GNDB13

GNDB24

GNDC2

GNDC4

GNDC23

GNDC25

GNDD3

GNDD5

GNDD22

GNDD24

GNDE4

GNDE6

GNDE9

GNDE18

GNDE21

GNDE23

GNDF5

GNDF8

GNDF10

GNDF11

GNDF13

GNDF14

GNDF16

GNDF17

GNDF19

GNDF22

GNDG9

GNDG12

GNDG15

GNDG18

GNDH1

GNDH6

GNDH21

GNDH26

GNDJ5

GNDJ7

GNDJ20

GNDJ22

GNDK21

GNDL6

GNDL21

GNDM7

GNDM20

GNDN6

GNDN21

GNDN25

GNDP2 GND P6GND P21GND R7GND R20GND T6GND T21GND U6GND U21GND V5GND V7GND V20GND V22GND W1GND W6GND W21GND W26GND Y9GND Y12GND Y15GND Y18GND AA5GND AA8GND AA10GND AA11GND AA13GND AA14GND AA16GND AA17GND AA19GND AA22GND AB4GND AB6GND AB9GND AB18GND AB21GND AB23GND AC3GND AC5GND AC22GND AC24GND AD2GND AD4GND AD23GND AD25GND AE3

GND AE24GND AF8GND AF19

GND AE14

U1C

TMS320C6414TGLZ

Figure B.3. DSP power connections.

62

R39
10K

R40
10K

DVDD

CVDD

CVDD

DVDD

DSP HPI / RSV(PCI)
RSV (PCI_EN) AA4

~HINT R4

HCNTL1 R1

HCNTL0 T4

HHWIL R3

HR P1

~HAS T3

~HCS R2

~HDS1 T1

~HDS2 T2

~HRDY P4

HD31 J2

HD30 K3

HD29 J1

HD28 K4

HD27 K2

HD26 L3

HD25 K1

HD24 L4

HD23 L1

HD22 M4

HD21 M2

HD20 N4

HD19 M1

HD18 N5

HD17 N1

HD16 P5

HD15 U4

HD14 U1

HD13 U3

HD12 U2

HD11 V4

HD10 V1

HD9 V3

HD8 V2

HD7 W2

HD6 W4

HD5 Y1

HD4 Y3

HD3 Y2

HD2 Y4

HD1 AA1

HD0 AA3

RSV (PCBE0) W3

RSV (XSP_CS) AD1

U1D

TMS320C6414TGLZ

DSP RSV(TEST)

DVDDR6

CVDDG14

CVDDH7

CVDDN20

CVDDP7

CVDDY13

NC A3

NC G2

NC H3

NC J4

NC K6

NC N3

NC P3

NC W25

U1F

TMS320C6414TGLZ

DSP RSV
(UTOPIA)

10K PDAD11

NCAC14

NC AE15

NCAC13

NC AE9

NCAD10 NCAD9 NCAD8

NC AE8

NC AF9

NC AF7

NC AE7

NCAD7

10K PDAD12

NC AF14

NC AD15

NCAB14

NC AF10

NC AE10

NC AF12

NC AE11

NC AF13NCAC11

NCAC12

NC AE12

NCAD14 NCAD13

U1E

TMS320C6414TGLZ

C1
100uF

C2
100uF

C3
100uF

C4
100uF

C5
100uF

C6
100uF

C7
100uF

C8
100uF

C9
.1uF

C10
.1uF

C11
.1uF

C12
.1uF

C13
.1uF

C14
.1uF

C15
.1uF

C16
.1uF

C17
.1uF

C18
.1uF

C19
.1uF

C20
.1uF

C21
.1uF

C22
.1uF

C23
.1uF

C24
.1uF

C25
.1uF

C26
.1uF

C27
.1uF

C28
.1uF

C29
.1uF

C30
.1uF

C31
.1uF

C32
.1uF

C33
.1uF

C34
.1uF

C35
.1uF

C36
.1uF

C37
.1uF

C38
.1uF

C39
.1uF

C40
.1uF

C41
.1uF

C42
.1uF

C43
.1uF

C44
.1uF

C45
.1uF

C46
.1uF

C47
.1uF

C48
.1uF

C49
.1uF

C50
.1uF

C51
.1uF

C52
.1uF

C53
.1uF

C54
.1uF

C55
.1uF

C56
.1uF

C57
.1uF

C58
.1uF

C59
.1uF

C60
.1uF

C61
.1uF

C62
.1uF

C63
.1uF

C64
.1uF

C65
.1uF

C66
.1uF

Figure B.4. DSP bypass capacitors, UTOPIA port, HPI port and reserved pins.

63

SC
LK

0

D
R

0

D
X

0

R1
7

33 R1
8

33 R1
9

33 R2
0

33
D

SP
EN

V
O

U
TA

1

V
O

U
TB

2

V
RE

FH
3

A
V

D
D

4

V
R

EF
L

5

G
N

D
6

V
O

U
TC

7

V
O

U
TD

8

SY
N

C
9

SC
LK

10

D
IN

11

IO
V

D
D

12

A
0

13
A

1
14

EN
A

BL
E

15
LD

A
C

16

U
13

D
A

C8
55

4

D
V

D
D

2.
5V

RE
F

D
V

D
D

R2
3 33

R2
2 33

R2
1 33

V
O

U
T

1

+V
S

2

N
C

3
SH

U
TD

O
W

N
4

G
N

D
5

U
12

TM
P3

5

D
V

D
D

R
14

33 R
15

33 R
16

33

D
V

D
D

R1
3 10

K

C
S

1
V

RE
F

2

G
N

D
3

A
IN

4

SC
LK

5

V
D

D
6

FS
7

SD
O

8

U
11

TL
V

25
41

D
G

K

2.
5V

RE
F

-1
2V

+1
2V

R
30

10
K

R3
2

10
K

R3
1

10
K

R3
3

10
K

2.
5V

RE
F

2.
5V

RE
F

D
SP

 S
er

ia
l

M
C

BS
P2

_E
N

A
F3

C
LK

R2
A

B1

C
LK

X
2

A
C2

D
R2

A
B3

D
X

2
A

A
2

FS
R2

A
C1

FS
X

2
A

B2

C
LK

S1
A

C8

C
LK

R1
A

C1
0

C
LK

X
1

A
B1

2
D

R1
A

F1
1

D
X

1
A

B1
1

FS
R1

A
C9

FS
X

1
A

B1
3

CL
K

S0
F4

C
LK

R0
D

1

C
LK

X
0

E1

D
R0

D
2

D
X

0
E2

FS
R0

C
1

FS
X

0
E3

U
1K

TM
S3

20
C6

41
4T

G
LZ

FA
ST

TU
N

E

SL
O

W
TU

N
E

O
U

TA
1

-IN
A

2

+I
N

A
3

V
-

4
+I

N
B

5
-IN

B
6

O
U

TB
7

V
+

8
U

14

O
PA

22
77

C
80

10
uF

C
82

10
uF

C8
4

10
uF

C8
6

10
uF

C
81

.1
uF

C
83

.1
uF

C8
5

.1
uF

C8
7

.1
uF

C8
8

.1
uF

C9
1

.1
uF

C
79

.1
uF

Figure B.5. DSP serial connections.

64

1 2
3 4
5 6
7 8
9 10
11 12
13 14

J2

JTAG Header

DVDD

DVDD

DVDD

R11
1K

R12
1K

R46

33
CLK40

R24
10K

BOOT_PAGE0

R26
10K

PROG_PAGE

R25
10K

BOOT_PAGE1
R27

33
R28

33
R29

33

DSP JTAG

TMS AB16

TDO AE19

TDI AF18

TCK AF16

~TRST AB15

EMU0 AF15EMU1 AC15EMU2 AE16EMU3 AD16EMU4 AC16EMU5 AE17EMU6 AD17EMU7 AF17EMU8 AC17EMU9 AE18EMU10 AD18EMU11 AC18

U1G

TMS320C6414TGLZ

DSP GPIO
GP0AF6

GP1AE6

GP2AD6

GP3AC6

GP4AF5

GP5AE5

GP6AD5

GP7AF4 GP9 M3GP10 L2GP11 F1GP12 J3GP13 G4GP14 F2GP15 G3

CLKS2/GP8 AE4

U1H

TMS320C6414TGLZ

DSPGP1

DSPGP2

DSPGP3

DSPGP4
R45

33

R44

33

R43

33

R42

33

LOCKED
R41

33

A 1B
2

C3

JP1
SMT 33OHM

A 1B
2

C3

JP2
SMT 33OHM

Figure B.6. DSP JTAG emulation port and general purpose port.

65

116
215
314
413
512
611
710
89

116
215
314
413
512
611
710
89

116
215
314
413
512
611
710
89

1 16
2 15
3 14
4 13
5 12
6 11
7 10
8 9

1 16
2 15
3 14

4 13

5 12
6 11

7 10
8 9

3 14

4 13
5 12
6 11
7 10

8 9

1 16

2 15

1 16

2 15

3 14

4 13
5 12

6 11

8 9

7 10

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

AA3
AA4
AA5
AA6
AA7
AA8
AA9
AA10
AA11
AA12
AA13
AA14
AA15
AA16

~ABE0
~ABE1
~ABE2
~ABE3

~ACE0

SDCLK

AECLKIN

~AARE

~AAWE
SDCKE

~AAOE

DSP EMIFA

~ACE3 L26

~ACE2 K23

~ACE1 K24

~ACE0 K25

~ABE7 T23

~ABE6 T24

~ABE0 L24~ABE1 L23~ABE2 M26~ABE3 M25~ABE4 R26~ABE5 R25

~APDT M22

~AHOLDA N22

~AHOLD V23

ABUSREQ P22

AECLKIN H25

AECLKOUT2 J23

AECLKOUT1 J26

~AARE J25

~AAOE J24

~AAWE K26

ASDCKE L25

~ASOE3 R22

AARDY L22

AEA3 M24AEA4 M23AEA5 N26AEA6 N24AEA7 N23AEA8 P26AEA9 P24AEA10 P23AEA11 R24AEA12 R23AEA13 T26AEA14 T25AEA15 U26AEA16 U25AEA17 U24AEA18 U23AEA19 V26AEA20 V25AEA21 V24AEA22 T22

AED0 A24AED1 A23AED2 B23AED3 B22AED4 C22AED5 A22AED6 C21AED7 B21

AED8D21 AED9A21 AED10C20 AED11B20 AED12D20 AED13A20 AED14D19 AED15C19 AED16H24 AED17H23 AED18G26 AED19G23 AED20G25 AED21G24 AED22F26 AED23F23 AED24F25 AED25F24 AED26E26 AED27E24 AED28E25 AED29D25 AED30D26 AED31C26 AED32AD26 AED33AC26 AED34AC25 AED35AB25 AED36AB24 AED37AB26 AED38AA24 AED39AA25 AED40AA23 AED41AA26 AED42Y24 AED43Y25 AED44Y23 AED45Y26 AED46W23 AED47W24 AED48AD19 AED49AC19 AED50AF20 AED51AC20 AED52AE20 AED53AD20 AED54AF21 AED55AC21 AED56AE21 AED57AD21 AED58AF22 AED59AD22 AED60AE22 AED61AE23 AED62AF23 AED63AF24U1I

TMS320C6414TGLZ

Figure B.7. DSP external memory interface A.

66

DVDD

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

~ACE0
~AAWE
~AARE
~AAOE

~ABE0
~ABE1
~ABE2
~ABE3

SDCLK
SDCKE

AA3
AA4
AA5
AA6
AA7
AA8
AA9
AA10
AA11
AA12
AA13
AA14
AA15
AA16

DVDD

VDD 1

DQ02

VDDQ 3

DQ14 DQ25

VSSQ 6

DQ37 DQ48

VDDQ 9

DQ510 DQ611

VSSQ 12

DQ713

NC14

VDD 15

DQM016

~WE17

~CAS18

~RAS19

~CS20

A11 21BA0 22BA1 23

A10 24

A0 25A1 26A2 27

DQM228

VDD 29

NC 30

DQ1631

VSSQ 32

DQ1733 DQ1834

VDDQ 35

DQ1936 DQ2037

VSSQ 38

DQ2139 DQ2240

VDDQ 41

DQ2342

VDD 43

VSS 44

DQ2445

VSSQ 46

DQ2547 DQ2648

VDDQ 49

DQ2750 DQ2851

VSSQ 52

DQ2953 DQ3054

VDDQ 55

DQ3156

NC 57

VSS 58

DQM359

A3 60A4 61A5 62A6 63A7 64A8 65A9 66

CKE67 CLK68

NC 69

NC 70

DQM171

VSS 72

NC 73

DQ874

VDDQ 75

DQ976 DQ1077

VSSQ 78

DQ1179 DQ1280

VDDQ 81

DQ1382 DQ1483

VSSQ 84

DQ1585

VSS 86

U5

MT48LC4M32B2TG-6

C100
10uF

C101
.1uF

C102
.1uF

C103
.1uF

C104
.1uF

C105
.1uF

Figure B.8. External SDRAM.

67

3

BD
0

BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

BD
8

BD
9

BD
10

BD
11

BD
12

BD
13

BD
14

BD
15

BA
1

BA
2

BA
3

BA
4

BA
5

BA
6

BA
7

BA
8

BA
9

BA
10

BA
11

BA
12

BA
13

BA
14

BA
15

BA
16

BA
17

BA
18

BA
19

BA
20

BO
O

T_
PA

G
E1

BD
0

BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

BD
8

BD
9

BD
10

BD
11

BD
12

BD
13

BD
14

BD
15

BA
1

BA
2

BA
3

BA
4

BA
5

BO
O

T
PA

G
E0

~B
A

O
E

BA
R

D
Y

B
A

R
D

Y

~B
CE

0

~B
CE

1

~ B
CE

1

~B
CE

2

~ B
CE

2

1
16

2
15

3
14

4
13

5
12

6
11

7
10

8
9

1
16

2
15

3
14

4
13

5
12

6
11

7
10

8
9

1
16

2
15

3
14

4
13

5
12

6
11

7
10

8
9

1
16

2
15

3
14

4
13

5
12

6
11

7
10

8
9

2
15

3
14

4
13

5
12

6
11

7
10

8
9

D
SP

 E
M

IF
B

~B
CE

3
A

13

~B
CE

2
C1

2

~B
CE

1
B1

2

~B
CE

0
A

12

~B
BE

1
D

13

~B
BE

0
C1

3

~B
PD

T
E1

2

~B
H

O
LD

A
E1

3

~B
H

O
LD

B1
9

BB
U

SR
EQ

E1
4

BE
C

LK
IN

A
11

BE
C

LK
O

U
T2

D
11

BE
C

LK
O

U
T1

D
12

~B
A

RE
A

10

~B
A

O
E

B1
1

~B
A

W
E

C1
1

~B
SO

E3
E1

5

BA
R

D
Y

E1
1

BE
A

1
A

14
BE

A
2

C1
4

BE
A

3
D

14
BE

A
4

A
15

BE
A

5
B1

5
BE

A
6

C1
5

BE
A

7
D

15
BE

A
8

A
16

BE
A

9
B1

6
BE

A
10

C1
6

BE
A

11
D

16
BE

A
12

A
17

BE
A

13
B1

7
BE

A
14

C1
7

BE
A

15
D

17
BE

A
16

A
18

BE
A

17
B1

8
BE

A
18

C1
8

BE
A

19
D

18
BE

A
20

E1
6

BE
D

0
B1

0
BE

D
1

D
10

BE
D

2
A

9
BE

D
3

C1
0

BE
D

4
B9

BE
D

5
D

9
BE

D
6

B8
BE

D
7

C9
BE

D
8

A
7

BE
D

9
C8

BE
D

10
B7

BE
D

11
D

8
BE

D
12

A
6

BE
D

13
C7

BE
D

14
B6

BE
D

15
D

7

U
1J

TM
S3

20
C

64
14

TG
LZ

15 26
N

C
9

N
C

10
R/

~B
15

E
26

U
3

R/
~W

R1 10
K

R
2

10
K

R3 10
K

D
V

D
D

BA
1

BA
2

BA
3

BA
4

BA
5

1
16

R5
4

10
K

R5
5

10
K

R5
6

10
K

R/
~W

Figure B.9. DSP external memory interface B.

68

PR
O
G
_P

A
G
E

BO
O
T_

PA
G
E1

~R
ES

ET

B
D
0

B
D
1

B
D
2

B
D
3

B
D
4

B
D
5

B
D
6

B
D
7

B
D
8

B
D
9

B
D
10

B
D
11

B
D
12

B
D
13

B
D
14

B
D
15

BA
1

BA
2

BA
3

BA
4

BA
5

BA
6

BA
7

BA
8

BA
9

BA
10

BA
11

BA
12

BA
13

BA
14

BA
15

BA
16

BA
17

BA
18

BA
19

BA
20

BO
O
T_

PA
G
E0

BA
1

BA
2

BA
3

BA
4

BA
5

BA
6

BA
7

BA
8

BA
9

BA
10

BA
11

BA
12

BA
13

BA
14

BA
15

BA
16

BA
17

BA
18

BA
19

BA
20

~B
A
O
E

R
/~
W

B
A
R
D
Y

~B
CE

1
~B

CE
2

BD
0

BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

D
V
D
D

D
V
D
D

A
15

1

A
14

2

A
13

3

A
12

4

A
11

5

A
10

6

A
9

7

A
8

8

A
19

9
A
20

10

~W
11

~R
P

12

N
C

13

~W
P

14

R/
~B

15

A
18

16

A
17

17

A
7

18

A
6

19

A
5

20

A
4

21

A
3

22

A
2

23

A
1

24

A
0

25

~E
26

V
SS

27

~G
28

D
Q
0

29

D
Q
8

30

D
Q
1

31

D
Q
9

32

D
Q
2

33

D
Q
10

34

D
Q
3

35

D
Q
11

36

V
CC

37

D
Q
4

38

D
Q
12

39

D
Q
5

40

D
Q
13

41

D
Q
6

42

D
Q
14

43

D
Q
7

44

D
Q
15
A
-1

45

V
SS

46
~B

Y
TE

47

A
16

48

U
2

M
29
W
32
0D

T

A
15

1

A
14

2

A
13

3

A
12

4

A
11

5

A
10

6

A
9

7

A
8

8

N
C

9
N
C

10

~W
11

~R
P

12

N
C

13

N
C

14

R/
~B

15

N
C

16

A
17

17

A
7

18

A
6

19

A
5

20

A
4

21

A
3

22

A
2

23

A
1

24

A
0

25

~E
26

V
SS

27

~G
28

D
Q
0

29

D
Q
8

30

D
Q
1

31

D
Q
9

32

D
Q
2

33

D
Q
10

34

D
Q
3

35

D
Q
11

36

V
CC

37

D
Q
4

38

D
Q
12

39

D
Q
5

40

D
Q
13

41

D
Q
6

42

D
Q
14

43

D
Q
7

44

D
Q
15
A
-1

45
V
SS

46

~B
Y
TE

47

A
16

48

U
3

M
29
W
40

0D
T

C9
3

.1
uF

C9
2

.1
uF

Figure B.10. External non-volatile memory and FPGA connection.

69

BIBLIOGRAPHY

70

BIBLIOGRAPHY

[1] T. L. Grimm, W. Hartung, T. Kandil, H. Khalil, J. Popielarski, J. Vincent. Measure-
ment and Control of Microphonics in High Loaded-Q Superconducting RF Cavities.
Proceedings of the 2004 International Linear Accelerator Conference, pages 815-817,
Lübeck, Germany, 2004.

[2] S. Simrock, G. Petrosyan, A. Facco, V.Zviagintev, S. Andreoli, T. Paparella. First
Demonstration of Microphonic Control of a Superconducting Cavity with a Fast
Piezoelectric Tuner. Proceedings of 2003 Particle Accelerator Conference, pages 470-
472, Portland, Oregon, 2003.

[3] T. H. Kandil, H. K. Khalil, J. Vincent, T. L. Grimm, W. Hartung, J. Popielarski, R. C.
York, S. Seshagiri. Adaptive Feedforward Cancellation of Sinusoidal Disturbances in
Superconducting RF Cavities. Nuclear Instruments and Methods in Physics Research
Section A, Volume 550, pages 514-520, September 2005.

[4] M. J. O’Farrell. Low Level Radio Frequency Control of RIA Superconducting Cavities.
Masters Thesis, Michigan State University, East Lansing, Michigan, 2005.

[5] H. Ma, K. Kasemir, M. Champion, M. Crofford, T. Hardek, M. Piller, Y. Zhang.
Digital RF Control for Spallation Neutron Source Accumulator Ring. Proceedings
of Particle Accelerator Conference 07, pages 611-613, Albuquerque, New Mexico,
2007.

[6] J. Branlard, B. Chase. Survey of LLRF Development for the ILC. Proceedings of Par-
ticle Accelerator Conference 07, pages 3810-3812, Albuquerque, New Mexico, 2007.

[7] J. Weber, M. Chin, C. Timossi, E. Williams. ALS Mini IOC: An FPGA Embedded
Processor Based Control System Module for Booster Magnet Ramping at the ALS
Proceedings of Particle Accelerator Conference 07, pages 3991-3993, Albuquerque,
New Mexico, 2007.

[8] S. A. Lewis. Overview of the Experimental Physics and Industrial Control System:
EPICS. Lawrence Berkeley National Laboratory, Berkeley, California, September
1998.

[9] L. Doolittle. Low-Level RF Control System Design and Architecture. Proceedings of
Asian Particle Accelerator Conference 2007, Madhya Pradesh, India, 2007.

[10] A. Molzahn. Digital Phase Detection in a Variable Frequency RF System. Masters
Thesis, Michigan State University, East Lansing, Michigan, 2005.

[11] J. E. Volder. The CORDIC Trigonometric Computing Technique. IRE Transactions on
Electronic Computers, v. EC-8, No. 3, pages 330-334, September 1959.

71

[12] A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole, Pacific Grove,
California, second edition, 1999.

[13] R. Andraka. A Survey of CORDIC Algorithms for FPGA Based Computers. Pro-
ceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Pro-
grammable Gate Arrays, pages 191-200, Monterey, California, February 1998.

[14] Texas Instruments, Inc. TMS320C6000 EMIF to External Asynchronous SRAM Inter-
face. spra542a, Texas Instruments, Inc, August 2001.

[15] L. R. Doolittle. Plan for a 50MHz Analog Output Channel. Lawrence Berkeley Na-
tional Laboratory, Berkeley, California, August 2002.

[16] Texas Instruments. 14-Bit, 165 MSPS Digital-to-Analog Converter. Device Data
Sheet, Burr-Brown Products, May 2002.

[17] Texas Instruments. 16-Bit, Quad Channel, Ultra-low Glitch, Voltage Output Digital-
to-Analog Converter. Device Data Sheet, Texas Instruments, Inc, June 2005.

[18] Texas Instruments. TMS320C6000 DSP Multichannel Buffered Serial Port (McBSP)
Reference Guide. spru580g, Texas Instruments, Inc, December 2006.

[19] Texas Instruments. TMS320C64x DSP Library Programmer’s Reference. spru565b,
Texas Instruments, Inc, October 2003.

[20] STMicroelectronics. M29W320DT M29W320DB. Device Data Sheet, STMicroelec-
tronics, November 2002.

[21] G. F. Franklin, J. D. Powell, A. Emami-Naeini. Feedback Control of Dynamic Sys-
tems. Fifth Edition. Prentice Hall, Upper Saddle River, New Jersey, 2006.

[22] T. H. Kandil. Adaptive Feedforward Cancellation of Sinusoidal Disturbances in Su-
perconducting Radio Frequency Cavities. Masters Thesis, Michigan State University,
East Lansing, Michigan, 2005.

[23] M. Bodson, A. Sacks, P. Khosla. Harmonic Generation in Adaptive Feedforward
Cancellation Schemes. IEEE Transactions on Automatic Control, Volume v. 39, i.
9, 1939-1944, September 1994.

[24] QT 4.3 Whitepaper. Trolltech ASA, Oslo, Norway, 2007.

[25] P. J. Antsaklis, A. N. Michel. Linear Systems. Mcgraw-Hill, Englewood Cliffs, New
Jersey, 1997.

72

